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Abstract. This paper presents a system evaluated in the Surveillance Event De-
tection (SED) task of TRECVid 2010 campaign. We investigate a generic sta-
tistical approach applied to seven event classes defined by the SED task. Our
video representation is based on local space-time descriptors which are vector-
quantized and aggregated into histograms within short temporal windows and
spatial regions defined by the prior. We use priors on the spatial localization of
actions estimated from the spatio-temporal annotation of actions in the training
data. To recognize actions, we learn one-against-all action classifiers using non-
linear SVMs. Each classifier is applied independently to localize temporal inter-
vals of actions using window-scanning approach. We present results of six runs
with variations in the two parameters: (i) classifier threshold and (ii) temporal
extent of the scanning window.

1 Introduction

Automatic video surveillance holds a great potential for security applications. The large
variability of video data with respect to view points, lighting, clothing of people as well
as occlusions currently makes this task to a highly challenging research problem. To
advance and to measure the progress in automatic video surveillance, TRECVID [1]
provides Surveillance Event Detection (SED) task. The goal of SED is to evaluate de-
tection of pre-defined event classes in real surveillance settings on the common video
corpus and annotations provided to participants. In 2010 TRECVid provides a corpus
with 144 hours of video from five video cameras located in the London Gatwick Inter-
national Airport. The video corpus is annotated with the temporal extents and the labels
for seven event classes: Pointing, PersonRunning, Embrace, ObjectPut, PeopleMeeting,
PeopleSplitting, and CellToEar. In this paper we describe our system applied to the de-
tection of all seven event classes. The paper is organized as follows: Section 2 presents
our system architecture. Section 3 presents evaluation of the system on the validation
set as well as the final automatic event detection results on the test set evaluated by
NIST. Conclusions and future work plans are given in Section 4.



2 System Architecture

The overview of our event detection system is presented in figure 1. The system can be
divided into 3 parts: (1) feature extraction and video representation, (2) learning event
models, (3) temporal event localization.
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Fig. 1. Overall system for surveillance events detection.

2.1 Local space-time features

To represent events in the video, we use local spatio-temporal interest point detector
(STIP) [2] combined with HOG and HOF descriptors [3]. STIP detector finds points in
the video corresponding to locations with significant local variation of image values in
both space and time. STIP detector in combination with HOGHOF descriptor has pre-
viously shown promising results for the task of action recognition and temporal action
localization in realistic scenes [4, 3, 5].

To obtain a compact video representation, we vector-quantize STIP features. For
this purpose we construct “visual vocabulary” [6] of local features by k-means cluster-
ing of a random subset of HOGHOF descriptors obtained from the training set. We set
vocabulary sizeK = 4000 (number of visual words) which has empirically shown good
results for a wide range of datasets. All features are assigned to their closest vocabulary
word using Euclidean distance.



2.2 Localization maps

The main goal of this step is to use the camera-dependent prior position of each action
in the scene. The SED TRECVid data are obtained from five static surveillance cameras
in London Gatwick Airport. Each camera view represents a public scene (e.g. controlled
access door, elevator close-up, etc). For training TRECVid provides only the temporal
localization of actions without spatial information. We have noticed that the occurrence
of specific actions is often biased towards specific locations in the scene. For example
”Embrace” event is often located at the exit from the custom area, as illustrated in
Figure 2.

Fig. 2. (Left): Example of Embrace event for the camera 2; (Right): The localization map com-
puted from all instances of Embrace action in the training data for this particular camera.

To construct spatial priors for events, we have annotated spatial extents of events in
training videos by bounding boxes around people performing the action. For each video
and event class we construct a map m by adding contributions p = 1/n of all pixels
within all annotated person bounding boxes in n frames. The camera and event-specific
localization map M c,e = (

∑
im

c,e
i )/k is then obtained as an average of all k maps

mc,e
i , i = 1..k for the specific camera c and event class e. Figure 3 illustrates localiza-

tion maps obtained for events PersonRuns and ObjectPut and for the five cameras. As
can be seen, the spatial localization of events varies both over the cameras and event
classes. We use this information as a spatial prior for event recognition. For this pur-
pose we obtain “action” and “no-action” regions by thresholding each map M > β and
separate local features w.r.t. action and non-action regions. We set threshold β = 0.1
empirically by cross-validation.

2.3 BoF representation

We represent each video interval by histograms of visual word obtained from the cor-
responding temporal window. For any camera c, histograms are computed and concate-
nated for action and non-action regions originating from seven action-specific localiza-
tion maps M c,e, e = 1..7 [7]. Each video is in this way represented by seven concate-
nated histograms regarded here as “channels”. Segmenting local descriptors based on



Fig. 3. The localization maps of PersonRuns and ObjectPut actions per camera view. The blue
regions represent the low action activities areas and the red regions show the higher activities
areas.

the foreground and background regions in video can be valuable in order to separate
foreground features which are more likely to belong to the action from the background
features which can help action recognition by capturing scene context.

An alternative separation of local features by spatio-temporal grids has been pre-
sented in [3]. Here we compare this approach with the one above. We test the spatial
only grids defining six channels: 1x1 grid that corresponds to the standard BoF rep-
resentation, 2x2, horizontal h3x1, vertical v1x3, denser 3x3 and center-focused o2x2
grids (see [3] for more details).

Fig. 4. Examples of spatio-temporal grids examples.

Experimental results in Table 1 demonstrate that the semantic decomposition of
features according to action regions provides a significant performance improvement.
LocMaps is compared to BoF and Grid approaches. We therefore use LocMaps results
for the final submission.

2.4 Classification

To classify videos according to seven event classes, we use non-linear SVM classi-
fier [8] with χ2 RBF kernel applied on LocMaps histogram-based video representation.
To combine evidence from seven event-specific channels, we use the product of kernels
as in [9]. To train multiple classes of events, we use one-against-all approach.



Actions BoF Grid LocMaps
PersonRuns 0.5247 0.6321 0.5714
ObjectPut 1.1108 1.1136 0.8889
CellToEar 0.4558 0.4198 0.1842
Embrace 0.2824 0.3151 0.1053

PeopleMeet 0.7165 0.6952 0.5035
PeopleSplitUp 0.5708 0.5694 0.3789

Pointing 0.271 0.271 0.1008
meanDCR 0.5617 0.5737 0.3904

Table 1. DCR scores per event using BoF, Grid and localization maps-based systems (the lower
the score, the better the performance). The classification performance is obtained for the valida-
tion set.

To evaluate our system in terms of DCR scores, we fix the classifier threshold τ and
declair an action to be present in videos with the SVM classification scores above τ .
We use the values τ = {−1, 0} in the final submission (see Tables 2,3).

2.5 Events detection and temporal non-max. suppression

We use the temporal sliding window approach to accomplish the detection task. The
sizes of the window used in our submission are lwin = 100, 150, 200 frames, we use
sliding window step size of 10 frames. This creates a high number of windows in the
test set (≈ 390000 windows). To remove redundant detections, we apply temporal non-
maximum suppression of detections based on their SVM classification scores.

3 Experimental results

Six runs are submitted based on two parameters variation: classifier threshold τ and
scanning window length lwin :

– Run 1 and 2: we have fixed the parameters lwin = 100 and τ = {−1, 0} respec-
tively,

– Run 3 and 4: lwin = 150 and τ = {−1, 0} respectively,
– Run 5 and 6: lwin = 200 and τ = {−1, 0} respectively,

The evaluation of our performance is based on the Detection Cost Rate (DCR) pro-
tocol using (F4DE) toolkit available from the MIG Tools Web page 3. DCR is a single
error measure that consists of a weighted linear combination of two errors: missed de-
tections probability and false alarm rate. A lower DCR indicates better system.

In Table 2 we notice that Runs 1, 3, and 5 (computed with τ = −1) have a high
DCR comparing to the Runs 2, 4 and 6 respectively. This can be explained by the effect
of τ = 0 that results in the reduced false alarm rate. The false alarm rate is still fairly

3 http://www.itl.nist.gov/iad/mig/tools/



high. A considerable portion of the false alarms are induced by the occlusion and the
intersection among people. Some human actions appear similar to the true in terms
of the motion patterns (e.g. touching hair is misclassified to CelltoEar, and it’s very
difficult to distinguish between ObjectPut and ObjectGet). Another common reason of
false alarms is due to the low resolution of people that are far away from a camera.

In term of the window length, the effect depends on each action. For example Peo-
pleSplitUp is a long time action that need bigger windows. In this case, Run 6 (i.e.
lwin = 300) have an advantage comparing to the rest, contrary to Pointing that is a fast
action where it needs a small window length. It’s encouraging to note that some runs
are competitive and able to get a min DCR close to 1 or lower with these fixed parame-
ters. Table 3 presents results of our system compared to the best results obtained by all
participants.

Actions Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
PersonRuns 3.795 1.108 3.814 1.127 3.824 1.118
ObjectPut 5.623 1.051 5.635 1.051 5.637 1.043
CellToEar 5.92 1.113 5.887 1.119 5.926 1.119
Embrace 11.112 2.979 11.13 2.991 11.112 2.985

PeopleMeet 13.325 3.927 13.365 3.914 13.386 3.921
PeopleSplitUp 12.847 3.168 12.847 3.157 12.876 3.140

Pointing 20.371 10.198 20.418 10.197 20.407 10.911

Table 2. Actual DCR scores by method and event.

Actions Ranking Best TRECVid sys. Best INRIA sys.
DCR DCR FA MissD

PersonRuns 5 0.737 1.108 472 102
ObjectPut 3 1.001 1.043 152 607
CellToEar 2 1.008 1.113 361 193
Embrace 6 0.967 2.979 7637 83

PeopleMeet 4 1.02 3.914 9532 345
PeopleSplitUp 5 0.959 3.14 7585 122

Pointing 6 0.999 10.197 28838 780

Table 3. Comparison between the best INRIA and TRECVid 2010 systems.

4 Conclusions and future work

In this paper we have described our first implementation and participation to SED
TRECVid. A real surveillance dataset from London Gatwick airport have been ana-



lyzed, using spatio-temporal interest points descriptor and detector. The obtained per-
formances show a good scores using this generic scheme, in particular for three actions:
PersonRuns, ObjectPut and CellToEar. In the future work we plan to extend the current
framework with better appearance models of actions as well as person-focused analysis
of video.

Actions Min. Median Mean Max.
PersonRuns 9 54 64 240
ObjectPut 4 24 34 212
CellToEar 4 16 33 192
Embrace 5 71 144 3188

PeopleMeet 7 72 82 330
PeopleSplitUp 16 89 108 851

Pointing 3 22 38 1029
Table 4. Statistics of event duration in the number of frames.
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5. H. Wang, M. Ullah, A. Kläser, I. Laptev, and C. Schmid, “Evaluation of local spatio-temporal
features for action recognition,” in British Machine Vision Conference, 2009.

6. J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object matching in
videos,” pp. 1470–1477.

7. M. Ullah, S. Parizi, and I. Laptev, “Improving bag-of-features action recognition with non-
local cues,” in British Machine Vision Conference, 2010.

8. V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer, 1995.
9. J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features and kernels for clas-

sification of texture and object categories: A comprehensive study,” Int. J. of Comp. Vision,
vol. 73, no. 2, pp. 213–238, June 2007.


